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The model space

e Large model space of different theories, even within
scalar-tensor theories.

e Efficiently computing observational consequences of each
theory is challenging.

o Effective Field Theory of Dark Energy gives an efficient
exploration of the model space.



Horndeski Theory

e Add a scalar field into Einstein’s gravity.

e Most general, local, Lorentz covariant, four-dimensional
scalar-tensor theory with second order equations of motion.

e Dilaton from string theory, compactified internal spaces,
extra dimensions, brane worlds...
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Effective field theory of Dark Energy (EFTofDE)

e Generalized and efficient approach to testing different
theories.

e Unitary gauge: ADM decomposition with ¢ = tM2. Then
X = (—1+6¢")M2.
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e Q(t) = 1 = Einstein gravity.
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Effective field theory of Dark Energy (EFTofDE)

e Generalized and efficient approach to testing different
theories.

e Unitary gauge: ADM decomposition with ¢ = tM2. Then
X = (=14 0¢")M2.
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e Q(t) = 1 = Einstein gravity. A(t) = A = ACDM.
e I' = M? = Quintessence.



Effective field theory of Dark Energy (EFTofDE)

e Generalized and efficient approach to testing different
theories.
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e Ghost condensate, DGP, khronon, kinetic braiding,
k-essence, galileon, Horndeski...

e With H(t) that’s now only seven free functions.



Alternative description of EFT functions

e Can go to another basis for the EFT functions,
an, ap, ok, ar, which have a more physical motivation.

e Expansion history H(t) fixed. Looking for probes of
modified gravity at the level of linear perturbations.

e Two descriptions related via a linear transformation e.g.

M2, 1
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Reconstructing Covariant theories

e The EFT functions Q, I', M2 etc are phenomenological
functions.

e Given constraints on the phenomenological EFT functions,
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Reconstructing Covariant theories

e The EFT functions Q, T, ]\_422 etc are phenomenological
functions.

e Given constraints on the phenomenological EFT functions,
what can we say about the space of covariant theories?

e Reconstruct the class of covariant Horndeski models that
are equivalent at the level of the background and linear
perturbations.



Reconstructing Covariant theories

e (Class of Horndeski theories that correspond to the EFT of
DE at the level of background and linear perturbations.
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The Reconstruction

e For example
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Similar expressions for other terms in the reconstructed action.



Non-linear corrections

e Such a reconstruction cannot be unique. Each AG;
quantifies the non-linear corrections that one can make to
move to an action that is degenerate at background and
linear level.
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o Each £,(¢) is a free function of ¢.



Derivation - Zeroth and first order
e Note the correspondence at the linear level

09" =1+ X/M;.

e Starting from the background and first order action with
Q =1 we find that
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e This corresponds to a quintessence model in non-canonical
form. Can perform a field re-definition to make it
canonical.



Derivation - Quadratic order

e Choose a term involving X™[J¢. For simplicity choose
n = 1. In the unitary gauge this becomes
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e Move all terms apart from §¢°°6 K to the left hand side,
and make replacement 6g%° = 1+ X/MZ.



Derivation - Quadratic order

o Identify ¢3(t) = 3 M7 ()M, ®. One obtains the action
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° This action is constructed such that it reduces to
—LM3(#)6g°°6 K in the unitary gauge. All of the
background and linear contributions cancel.



Examples
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Examples

Assume the EFT functions are measured as
MZT(t) = 4M3(t) = 3H(t) M7 (t) = —AH(t),
Q(t) = exp(—2M.,t),
The covariant action that this corresponds to:
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with A\ = 6M2r2.



Restricting model space with reconstruction
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Restricting model space with reconstruction

e Consider the case of ar = 0. This corresponds to M3 = 0.

e Using the reconstruction we find that this implies

c1(¢) =0.
e On linear scales G4(¢, X) — G4(9).



Plots

e Can reconstruct particular parametrizations, for example
a;(t) = ¢;Q2(t). Choose observationally constrained values
(Bellini et al 2016), ensuring stability ¢2 > 0, ¢& > 0 etc
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Summary

EFTofDE provides a generalized and efficient exploration
of the parameter space.

Provided a reconstruction from EFT back to the space of
manifestly covariant theories, e.g. U(¢) 1705.09290.

Can explore the theory space probed by different
parametrizations of the EFT functions.

Are the theories described by EFT guaranteed to have an
Finstein gravity limit?

Long term aim: connect observables to theories.
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Stability conditions

e There exist certain conditions within EFT that need to be
satisfied in order for the theory to be theoretically stable.
E.g. no ghost or gradient instabilities.

e Can one find a parametrization of the EFT functions that
correspond directly to a stable theory.

e The reconstructed action within this space of theories is
then guaranteed to be theoretically stable.
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Screening conditions

e Are the theories described by the EFT of dark energy
guaranteed to have an Einstein limit.



e Construct a covariant scalar-tensor theory that leads to
weak gravity.



